If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 9k2 + 12k + -4 = 0 Reorder the terms: -4 + 12k + 9k2 = 0 Solving -4 + 12k + 9k2 = 0 Solving for variable 'k'. Begin completing the square. Divide all terms by 9 the coefficient of the squared term: Divide each side by '9'. -0.4444444444 + 1.333333333k + k2 = 0 Move the constant term to the right: Add '0.4444444444' to each side of the equation. -0.4444444444 + 1.333333333k + 0.4444444444 + k2 = 0 + 0.4444444444 Reorder the terms: -0.4444444444 + 0.4444444444 + 1.333333333k + k2 = 0 + 0.4444444444 Combine like terms: -0.4444444444 + 0.4444444444 = 0.0000000000 0.0000000000 + 1.333333333k + k2 = 0 + 0.4444444444 1.333333333k + k2 = 0 + 0.4444444444 Combine like terms: 0 + 0.4444444444 = 0.4444444444 1.333333333k + k2 = 0.4444444444 The k term is 1.333333333k. Take half its coefficient (0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. 1.333333333k + 0.4444444442 + k2 = 0.4444444444 + 0.4444444442 Reorder the terms: 0.4444444442 + 1.333333333k + k2 = 0.4444444444 + 0.4444444442 Combine like terms: 0.4444444444 + 0.4444444442 = 0.8888888886 0.4444444442 + 1.333333333k + k2 = 0.8888888886 Factor a perfect square on the left side: (k + 0.6666666665)(k + 0.6666666665) = 0.8888888886 Calculate the square root of the right side: 0.942809041 Break this problem into two subproblems by setting (k + 0.6666666665) equal to 0.942809041 and -0.942809041.Subproblem 1
k + 0.6666666665 = 0.942809041 Simplifying k + 0.6666666665 = 0.942809041 Reorder the terms: 0.6666666665 + k = 0.942809041 Solving 0.6666666665 + k = 0.942809041 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = 0.942809041 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = 0.942809041 + -0.6666666665 k = 0.942809041 + -0.6666666665 Combine like terms: 0.942809041 + -0.6666666665 = 0.2761423745 k = 0.2761423745 Simplifying k = 0.2761423745Subproblem 2
k + 0.6666666665 = -0.942809041 Simplifying k + 0.6666666665 = -0.942809041 Reorder the terms: 0.6666666665 + k = -0.942809041 Solving 0.6666666665 + k = -0.942809041 Solving for variable 'k'. Move all terms containing k to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + k = -0.942809041 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + k = -0.942809041 + -0.6666666665 k = -0.942809041 + -0.6666666665 Combine like terms: -0.942809041 + -0.6666666665 = -1.6094757075 k = -1.6094757075 Simplifying k = -1.6094757075Solution
The solution to the problem is based on the solutions from the subproblems. k = {0.2761423745, -1.6094757075}
| 2x+x+(x+8)=180 | | f=50-x-2x | | 3*602.9/113.04=x | | P/2-(-2/5+7p/4)=17/5-9p/4 | | (2/7)x-(1/4)x+10=(3/14)x | | 231=-7(3-6k) | | 3+8(-3n+3)=7(n+6)+5 | | 440=-8(-7-8v) | | 4/7x+2=-6 | | 6*2x=24 | | 7(1/3)+3(3/5)-2(1/4) | | 3*(3/4*x-1/4)+3/8*(3*x-2) | | 1.02+2x=2.02 | | 60c-54(c-2)=21 | | .4x=-24 | | 5x+14+x=56 | | -186=6(5x-6) | | -5(y+3)=5 | | -4y-(-0.3+6y)=12.3 | | 7r-12r= | | 24/6+4-48/6*8 | | 18x=1.2x | | -(5x+8)+12=32 | | 24-4x=8(6x+3) | | 2x+x+3=26 | | 7+13a/2=-1/2(-5a-4) | | 5x-b/7=y | | 7(3x+7)=49 | | -120=4(2-4x) | | 0.4x+0.2=0.6 | | 24bdc=512 | | 6=-2x-2+2x |